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COMMENT 

On the Hill determinant method 

J Killingbeck 
Physics Department, University of Hull, Hull HU6 7RX, UK 

Received 28 January 1986 

Abstract. Explicit examples are given of the false eigenvalues of the Hill determinant 
method, the existence of which had been suspected by workers using analytic methods. A 
simple criterion is discovered for distinguishing between false and physical eigenvalues. 

1. Introduction 

In recent years several workers have suggested on mathematical grounds that the Hill 
determinant method can give false (i.e. unphysical) eigenvalues for a Schrodinger 
equation which involves perturbed oscillator or perturbed Coulomb potentials. In 
particular, Flessas (1982) suggested that the Hill determinant approach of Datta and 
Mukherjee (1980) could give false eigenvalues for a radial Schrodinger equation of 
the form 

2 

- D z + + c  V ( m ) r " + =  E+. (1) 
-2 

Until recently, an explicit example of such a false eigenvalue had not been published. 
Chaudhuri (1985) established analytically for a special perturbed oscillator problem 
that the Hill determinant eigenvalues must differ from those of the associated Schrodin- 
ger equation. Killingbeck (1986) finally gave explicit examples of false eigenvalues 
and showed that they share several of the properties of the physical eigenvalues. In 
the present comment we give the first examples of false eigenvalues for a perturbed 
Coulomb potential and show that it is possible to generate at will either physical or 
false eigenvalues. The false eigenvalues reveal themselves by having a negative value 
for the expectation values ( r )  and ( r - ' ) ,  when the expectation values are defined by 
the standard equation 

( r " )  = d E / d  V (  n) (2) 
and the V ( n )  are the potential coefficients in the Schrodinger equation (1). 

Since equation (2) plays a key role in the calculation, we should first clarify its 
connection with the traditional formula for an expectation value. ( I " )  would usually 
be obtained as an integral involving the product +'r", with + a normalised wavefunction. 
However, first-order perturbation theory shows that adding a small extra perturbing 
potential Ar" to the Hamiltonian will produce an energy change A ( r " ) .  Thus ( r " )  can 
alternatively be regarded as a response coefficient and can be obtained by monitoring 
how the energy eigenvalue changes as the coefficient of r" increases. It is this point 
of view which leads to equation (2) and it has the advantage that it can be applied 
directly in energy calculations (by varying the potential slightly) without actually 
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forming a normalised wavefunction and calculating integrals. For a proper bound 
state the integral definition and the response coefficient definition of ( r " )  give the same 
number. However, from the integral definition it is clear that ( r " )  must be positive for 
a physical state, whereas (as we see in what follows) application of the response 
coefficient view can lead to negative values. These cannot correspond to a proper 
physical state. In terms of the energy, a negative ( I " )  indicates an eigenvalue which 
falls if the coefficient of rn in the potential increases, whereas it is clear that for the 
correct physical states the eigenvalues must increase as more of the positive definite 
operator r" is added to the potential. Thus a negative value for ( r " ) ,  as defined by 
equation (2), reveals an energy eigenvalue which 'goes the wrong way' as the potential 
strength is increased. 

2. Method of calculation 

We proceed by inserting into equation (1) the ansatz 
03 

+=exp(-ar-pr ' )  1 A(n)r" (3) 
I +  1 

for states of angular momentum 1. For such states the coefficient V(-2) in the 
Schrodinger equation (1) is assigned the value I (  l + 1). After a little algebra we obtain 
the recurrence relation 
[(n + l ) ( n  +2) - l ( l +  l ) ] A ( n  +2) 

= [ V( -1) + 2 a (  n + l ) ] A (  n + 1 )  + [(4n + 2)p - a' - E ] A (  n) 

+[ V(1)-4ap]A(n-1)+[V(2)-4P2]A(n-2). (4) 
To use (4) the initial value A ( l +  1) = 1 is used, with all preceding A ( n )  zero. The 
relation (4) is then used to compute A ( N )  for some large N (typically 50) and for a 
trial E value. E is then varied and the eigenvalues E,, are the E values which make 
A ( N )  zero. The idea of the method is that the E, should tend to limiting values 
(indeed, the eigenvalues of the Schrodinger equation ( 1 ) )  as N increases. Ginsburg 
(1982) has used this approach to obtain eigenvalues and Killingbeck (1985a) showed 
that it is equivalent to the usual (but more tedious) one which evaluates Hill deter- 
minants of increasing size. He also extended the method to permit the direct evaluation 
of expectation values. To calculate ( I " )  by this method we differentiate the recurrence 
relation (4) with respect to E and V(n) and then use equation (2) in conjunction with 
the equation 

All of the recurrence relations involved use the same coefficients, which simplifies the 
computations. The details of the computation have been described in two previous 
works (Killingbeck 1985a, b) and we concentrate here on the distinction between 
physical and false eigenvalues. 

3. Physical and false eigenvalues 

To simplify the calculation we choose p such that 4 p 2 =  V ( 2 ) ,  with p > 0, which 
removes one term from the recurrence relation (4). We assume V(2) to be non-negative 



On the Hill determinant method 2905 

to ensure the existence of proper bound states. It would be possible to choose a to 
render (4) a three-term recurrence relation, corresponding to a tridiagonal matrix 
eigenvalue problem. This choice was in fact made by Datta and Mukherjee (1980), 
but we have discovered that by leaving a variable we can produce either physical or 
false eigenvalues. For a sufficiently large positive a the eigenvalues are the correct 
Schrodinger equation ones. As a is decreased a region of very slow convergence is 
reached, below which the false eigenvalues are produced. When the calculation 
converges it produces either the physical or the false eigenvalues, not any varying 
intermediate values (i.e. it jumps from one mode of operation to the other). Table 1 
shows some typical results, which illustrate the negative values of ( r )  and ( r - ' )  which 
we found to be invariably associated with the false eigenvalues. For the case of the 
oscillator potential V =  r2 we found that the false and physical energies agreed, with 
the false ( r )  and ( r - ' )  values being exactly the negatives of the physical values. This 
special case suggests that there might be a functional relationship between the false 
and physical numbers, but so far we have not been able to discover it. (We should 
note that in the case of perturbed oscillator problems Znojil (1986) has shown that 
our computed false energies can be regarded as physical energies for a different 
potential.) However, this comment shows that (for a fixed potential) the false energies, 
which until recently were only theoretically conjectured, can be generated and also 
distinguished from the physical energies. Indeed, it turns out that it is the recently 
developed technique of expectation value calculation (Killingbeck 1985a) which 
enables the distinction to be made. 

Table 1. Specimen results for the potential -r-'  + r +  r2 ,  

5 , o  2.750 000 0 
7.621 433 7 

-5,o 2.750 000 0 
6.105 909 7 

531 5.621 433 7 

-5, 1 4.105 909 7 
7.615 295 3 

5,2 8.100 743 9 

-5,2 5.683 783 2 
9.213 235 1 

10.180 899 

12.547 301 

0.926 727 79 
1 .549 650 9 

-1.382 043 4 
-1.861 464 3 

1.345 281 4 
1.822 100 8 

- 1.699 964 6 
-2.112 1184 

1.659 873 5 
2.062 574 6 

- 1.979 952 2 
-2.342 381 

1.426 721 8 
1.054 078 3 

-0.882 043 39 
-0.819 485 64 

0.849 708 83 
0.735 570 90 

-0.657 985 85 
-0.617 103 66 

0.657 591 17 
0.598 200 53 

-0.545 754 25 
-0.518 378 48 

Note added. We have discovered, by computation and by analysis of (4), that the false energies (with 
a = - 5 )  in table 1 agree with the true energies (with a = 5 )  for the different potential r-' - r +  r2 .  
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